

Advanced course on

HIGH RESOLUTION ELECTRONIC MEASUREMENTS IN NANO-BIO SCIENCE

Measurements at a given frequency The Lock-in concept

Marco Sampietro

Small bandwidth \Rightarrow **Low noise**

... small bandwidth at high frequency

Marco Sampietro

Example : measurement of R

The Lock-in concept 20 min

Performance in sensitivity 20 min

The lock-in concept

POLITECNICO DI MILANO

The LOCK-IN idea

The LOCK-IN idea

Credited to Robert Dicke, founder of Princeton Applied Research (PAR) in the 1960's.

The lock-in concept

Tracking sensor with the LOCK-IN

DUT variations can be tracked with time by simply monitoring the level of the output

Phase selectivity of the Lock-in

Frequency selectivity of the Lock-in

Signals with different frequency to reference are rejected

The	lock-in	concept
-----	---------	---------

Noise suppression

The lock-in concept

Analytical view - Signal

Analytical view - Power

The lock-in concept

Signal to Noise RATIO

Lock-In Noise Filtering

- The modulation *whiten* the noise spectrum in base band at the value sampled at f₀
- The order of the filter is not critical for the noise (a first order is ok even with non-white noise)
- The filter has to properly cut the 2f₀ component

M. Carminati et al. "Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.," Rev. Sci. Instrum., vol. 80, no. 12, p. 124701 (2009), doi: 10.1063/1.3245343.

- The Lock-in concept 20 min

Performance in sensitivity 20 min

The lock-in concept

POLITECNICO DI MILANO

Limit of sensitivity : Noise Analysis

A recap of the input noise of the TIA :

 $S_{i} = \overline{i_{n}^{2}} + 4kT(G_{x} + G_{f}) + \overline{e_{n}^{2}}\omega^{2}(C_{x} + C_{p})^{2} + \overline{e_{n}^{2}}(G_{x} + G_{f})^{2}$ To be compared with the Signal (V, I)

Limit of sensitivity - for R

POLITECNICO DI MILANO

Limit of sensitivity - for R

Sinusoidal measurement of C

Limit of sensitivity - for C

Limit of sensitivity - for C

Improvement with Voltage amplitude

Special TIA for square wave mixer

If a square wave mixer is used, it introduces harmonics that fold a lot of noise If a square wave mixer is used, higher harmonics give little noise

In conclusion ...

The lock-in concept

POLITECNICO DI MILANO

A Lock-in amplifier is «like» a band-pass filter at f₀

By changing measurement frequency f_0 , you can choose the optimal position

Things to remember (2)

Signal variations can be tracked with time by simply monitoring the level of the output

Extremely high sensitivity can be reached in device characterisation

